ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.12824
25
7

Neural Architecture Evolution in Deep Reinforcement Learning for Continuous Control

28 October 2019
Jörg Franke
Gregor Koehler
Noor H. Awad
Frank Hutter
ArXivPDFHTML
Abstract

Current Deep Reinforcement Learning algorithms still heavily rely on handcrafted neural network architectures. We propose a novel approach to automatically find strong topologies for continuous control tasks while only adding a minor overhead in terms of interactions in the environment. To achieve this, we combine Neuroevolution techniques with off-policy training and propose a novel architecture mutation operator. Experiments on five continuous control benchmarks show that the proposed Actor-Critic Neuroevolution algorithm often outperforms the strong Actor-Critic baseline and is capable of automatically finding topologies in a sample-efficient manner which would otherwise have to be found by expensive architecture search.

View on arXiv
Comments on this paper