ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.12701
24
8

Limiting behavior of largest entry of random tensor constructed by high-dimensional data

28 October 2019
Tiefeng Jiang
Junshan Xie
ArXivPDFHTML
Abstract

Let Xk=(xk1,⋯ ,xkp)′,k=1,⋯ ,n{X}_{k}=(x_{k1}, \cdots, x_{kp})', k=1,\cdots,nXk​=(xk1​,⋯,xkp​)′,k=1,⋯,n, be a random sample of size nnn coming from a ppp-dimensional population. For a fixed integer m≥2m\geq 2m≥2, consider a hypercubic random tensor T\mathbf{{T}}T of mmm-th order and rank nnn with \begin{eqnarray*} \mathbf{{T}}= \sum_{k=1}^{n}\underbrace{{X}_{k}\otimes\cdots\otimes {X}_{k}}_{m~multiple}=\Big(\sum_{k=1}^{n} x_{ki_{1}}x_{ki_{2}}\cdots x_{ki_{m}}\Big)_{1\leq i_{1},\cdots, i_{m}\leq p}. \end{eqnarray*} Let WnW_nWn​ be the largest off-diagonal entry of T\mathbf{{T}}T. We derive the asymptotic distribution of WnW_nWn​ under a suitable normalization for two cases. They are the ultra-high dimension case with p→∞p\to\inftyp→∞ and log⁡p=o(nβ)\log p=o(n^{\beta})logp=o(nβ) and the high-dimension case with p→∞p\to \inftyp→∞ and p=O(nα)p=O(n^{\alpha})p=O(nα) where α,β>0\alpha,\beta>0α,β>0. The normalizing constant of WnW_nWn​ depends on mmm and the limiting distribution of WnW_nWn​ is a Gumbel-type distribution involved with parameter mmm.

View on arXiv
Comments on this paper