ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.11933
57
14
v1v2 (latest)

Confidence Estimation for Black Box Automatic Speech Recognition Systems Using Lattice Recurrent Neural Networks

25 October 2019
Alexandros Kastanos
Anton Ragni
Mark Gales
ArXiv (abs)PDFHTML
Abstract

Recently, there has been growth in providers of speech transcription services enabling others to leverage technology they would not normally be able to use. As a result, speech-enabled solutions have become commonplace. Their success critically relies on the quality, accuracy, and reliability of the underlying speech transcription systems. Those black box systems, however, offer limited means for quality control as only word sequences are typically available. This paper examines this limited resource scenario for confidence estimation, a measure commonly used to assess transcription reliability. In particular, it explores what other sources of word and sub-word level information available in the transcription process could be used to improve confidence scores. To encode all such information this paper extends lattice recurrent neural networks to handle sub-words. Experimental results using the IARPA OpenKWS 2016 evaluation system show that the use of additional information yields significant gains in confidence estimation accuracy.

View on arXiv
Comments on this paper