ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.10815
22
12

Low-frequency Compensated Synthetic Impulse Responses for Improved Far-field Speech Recognition

23 October 2019
Zhenyu Tang
Hsien-Yu Meng
Tianyi Zhou
ArXivPDFHTML
Abstract

We propose a method for generating low-frequency compensated synthetic impulse responses that improve the performance of far-field speech recognition systems trained on artificially augmented datasets. We design linear-phase filters that adapt the simulated impulse responses to equalization distributions corresponding to real-world captured impulse responses. Our filtered synthetic impulse responses are then used to augment clean speech data from LibriSpeech dataset [1]. We evaluate the performance of our method on the real-world LibriSpeech test set. In practice, our low-frequency compensated synthetic dataset can reduce the word-error-rate by up to 8.8% for far-field speech recognition.

View on arXiv
Comments on this paper