ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.10670
16
6

Efficient Dynamic WFST Decoding for Personalized Language Models

23 October 2019
Jun Liu
Jiedan Zhu
Vishal Kathuria
Fuchun Peng
ArXivPDFHTML
Abstract

We propose a two-layer cache mechanism to speed up dynamic WFST decoding with personalized language models. The first layer is a public cache that stores most of the static part of the graph. This is shared globally among all users. A second layer is a private cache that caches the graph that represents the personalized language model, which is only shared by the utterances from a particular user. We also propose two simple yet effective pre-initialization methods, one based on breadth-first search, and another based on a data-driven exploration of decoder states using previous utterances. Experiments with a calling speech recognition task using a personalized contact list demonstrate that the proposed public cache reduces decoding time by factor of three compared to decoding without pre-initialization. Using the private cache provides additional efficiency gains, reducing the decoding time by a factor of five.

View on arXiv
Comments on this paper