ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.09687
16
12

Signal Combination for Language Identification

21 October 2019
Shengye Wang
Li Wan
Yang Yu
Ignacio López Moreno
ArXivPDFHTML
Abstract

Google's multilingual speech recognition system combines low-level acoustic signals with language-specific recognizer signals to better predict the language of an utterance. This paper presents our experience with different signal combination methods to improve overall language identification accuracy. We compare the performance of a lattice-based ensemble model and a deep neural network model to combine signals from recognizers with that of a baseline that only uses low-level acoustic signals. Experimental results show that the deep neural network model outperforms the lattice-based ensemble model, and it reduced the error rate from 5.5% in the baseline to 4.3%, which is a 21.8% relative reduction.

View on arXiv
Comments on this paper