ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.09351
21
3
v1v2 (latest)

Theoretical Investigation of Composite Neural Network

18 October 2019
M. Yang
Meng Chang Chen
    PINN
ArXiv (abs)PDFHTML
Abstract

A composite neural network is a rooted directed acyclic graph combining a set of pre-trained and non-instantiated neural network models. A pre-trained neural network model is well-crafted for a specific task and with instantiated weights. is generally well trained, targeted to approximate a specific function. Despite a general belief that a composite neural network may perform better than a single component, the overall performance characteristics are not clear. In this work, we prove that there exist parameters such that a composite neural network performs better than any of its pre-trained components with a high probability bound.

View on arXiv
Comments on this paper