6
2

Spectral CUSUM for Online Network Structure Change Detection

Abstract

Detecting abrupt changes in the community structure of a network from noisy observations is a fundamental problem in statistics and machine learning. This paper presents an online change detection algorithm called Spectral-CUSUM to detect unknown network structure changes through a generalized likelihood ratio statistic. We characterize the average run length (ARL) and the expected detection delay (EDD) of the Spectral-CUSUM procedure and prove its asymptotic optimality. Finally, we demonstrate the good performance of the Spectral-CUSUM procedure and compare it with several baseline methods using simulations and real data examples on seismic event detection using sensor network data.

View on arXiv
Comments on this paper