ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.08288
93
64
v1v2v3v4 (latest)

Attentive Knowledge Graph Embedding for Personalized Recommendation

18 October 2019
Xiao Sha
Zhu Sun
Jie Zhang
ArXiv (abs)PDFHTML
Abstract

Knowledge graphs (KGs) have proven to be effective for high-quality recommendation. Most efforts, however, explore KGs by either extracting separate paths connecting user-item pairs, or iteratively propagating user preference over the entire KGs, thus failing to efficiently exploit KGs for enhanced recommendation. In this paper, we design a novel attentive knowledge graph embedding (AKGE) framework for recommendation, which sufficiently exploits both semantics and topology of KGs in an interaction-specific manner. Specifically, AKGE first automatically extracts high-order subgraphs that link user-item pairs with rich semantics, and then encodes the subgraphs by the proposed attentive graph neural network to learn accurate user preference. Extensive experiments on three real-world datasets demonstrate that AKGE consistently outperforms state-of-the-art methods. It additionally provides potential explanations for the recommendation results.

View on arXiv
Comments on this paper