ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.08143
15
2
v1v2 (latest)

Scoring-Aggregating-Planning: Learning task-agnostic priors from interactions and sparse rewards for zero-shot generalization

17 October 2019
Huazhe Xu
Boyuan Chen
Yang Gao
Trevor Darrell
    OffRL
ArXiv (abs)PDFHTML
Abstract

Humans can learn task-agnostic priors from interactive experience and utilize the priors for novel tasks without any finetuning. In this paper, we propose Scoring-Aggregating-Planning (SAP), a framework that can learn task-agnostic semantics and dynamics priors from arbitrary quality interactions under sparse reward and then plan on unseen tasks in zero-shot condition. The framework finds a neural score function for local regional state and action pairs that can be aggregated to approximate the quality of a full trajectory; moreover, a dynamics model that is learned with self-supervision can be incorporated for planning. Many previous works that leverage interactive data for policy learning either need massive on-policy environmental interactions or assume access to expert data while we can achieve a similar goal with pure off-policy imperfect data. Instantiating our framework results in a generalizable policy to unseen tasks. Experiments demonstrate that the proposed method can outperform baseline methods on a wide range of applications including gridworld, robotics tasks, and video games.

View on arXiv
Comments on this paper