ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.07713
14
0

BIG MOOD: Relating Transformers to Explicit Commonsense Knowledge

17 October 2019
Jeff Da
ArXivPDFHTML
Abstract

We introduce a simple yet effective method of integrating contextual embeddings with commonsense graph embeddings, dubbed BERT Infused Graphs: Matching Over Other embeDdings. First, we introduce a preprocessing method to improve the speed of querying knowledge bases. Then, we develop a method of creating knowledge embeddings from each knowledge base. We introduce a method of aligning tokens between two misaligned tokenization methods. Finally, we contribute a method of contextualizing BERT after combining with knowledge base embeddings. We also show BERTs tendency to correct lower accuracy question types. Our model achieves a higher accuracy than BERT, and we score fifth on the official leaderboard of the shared task and score the highest without any additional language model pretraining.

View on arXiv
Comments on this paper