ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.07478
14
22

Adaptive Trade-Offs in Off-Policy Learning

16 October 2019
Mark Rowland
Will Dabney
Rémi Munos
    OffRL
ArXivPDFHTML
Abstract

A great variety of off-policy learning algorithms exist in the literature, and new breakthroughs in this area continue to be made, improving theoretical understanding and yielding state-of-the-art reinforcement learning algorithms. In this paper, we take a unifying view of this space of algorithms, and consider their trade-offs of three fundamental quantities: update variance, fixed-point bias, and contraction rate. This leads to new perspectives of existing methods, and also naturally yields novel algorithms for off-policy evaluation and control. We develop one such algorithm, C-trace, demonstrating that it is able to more efficiently make these trade-offs than existing methods in use, and that it can be scaled to yield state-of-the-art performance in large-scale environments.

View on arXiv
Comments on this paper