ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.07295
25
12

Towards Resolving Propensity Contradiction in Offline Recommender Learning

16 October 2019
Yuta Saito
Masahiro Nomura
    OffRL
ArXivPDFHTML
Abstract

We study offline recommender learning from explicit rating feedback in the presence of selection bias. A current promising solution for the bias is the inverse propensity score (IPS) estimation. However, the performance of existing propensity-based methods can suffer significantly from the propensity estimation bias. In fact, most of the previous IPS-based methods require some amount of missing-completely-at-random (MCAR) data to accurately estimate the propensity. This leads to a critical self-contradiction; IPS is ineffective without MCAR data, even though it originally aims to learn recommenders from only missing-not-at-random feedback. To resolve this propensity contradiction, we derive a propensity-independent generalization error bound and propose a novel algorithm to minimize the theoretical bound via adversarial learning. Our theory and algorithm do not require a propensity estimation procedure, thereby leading to a well-performing rating predictor without the true propensity information. Extensive experiments demonstrate that the proposed approach is superior to a range of existing methods both in rating prediction and ranking metrics in practical settings without MCAR data.

View on arXiv
Comments on this paper