ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.07134
11
2

Efficiency through Auto-Sizing: Notre Dame NLP's Submission to the WNGT 2019 Efficiency Task

16 October 2019
Kenton W. Murray
Brian DuSell
David Chiang
ArXivPDFHTML
Abstract

This paper describes the Notre Dame Natural Language Processing Group's (NDNLP) submission to the WNGT 2019 shared task (Hayashi et al., 2019). We investigated the impact of auto-sizing (Murray and Chiang, 2015; Murray et al., 2019) to the Transformer network (Vaswani et al., 2017) with the goal of substantially reducing the number of parameters in the model. Our method was able to eliminate more than 25% of the model's parameters while suffering a decrease of only 1.1 BLEU.

View on arXiv
Comments on this paper