ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.02835
40
14

A Learnable Safety Measure

7 October 2019
Steve Heim
Alexander von Rohr
Sebastian Trimpe
Alexander Badri-Spröwitz
ArXivPDFHTML
Abstract

Failures are challenging for learning to control physical systems since they risk damage, time-consuming resets, and often provide little gradient information. Adding safety constraints to exploration typically requires a lot of prior knowledge and domain expertise. We present a safety measure which implicitly captures how the system dynamics relate to a set of failure states. Not only can this measure be used as a safety function, but also to directly compute the set of safe state-action pairs. Further, we show a model-free approach to learn this measure by active sampling using Gaussian processes. While safety can only be guaranteed after learning the safety measure, we show that failures can already be greatly reduced by using the estimated measure during learning.

View on arXiv
Comments on this paper