21
0

Zero Shot Learning on Simulated Robots

Abstract

In this work we present a method for leveraging data from one source to learn how to do multiple new tasks. Task transfer is achieved using a self-model that encapsulates the dynamics of a system and serves as an environment for reinforcement learning. To study this approach, we train a self-models on various robot morphologies, using randomly sampled actions. Using a self-model, an initial state and corresponding actions, we can predict the next state. This predictive self-model is then used by a standard reinforcement learning algorithm to accomplish tasks without ever seeing a state from the "real" environment. These trained policies allow the robots to successfully achieve their goals in the "real" environment. We demonstrate that not only is training on the self-model far more data efficient than learning even a single task, but also that it allows for learning new tasks without necessitating any additional data collection, essentially allowing zero-shot learning of new tasks.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.