ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.01837
11
57

Enriching Visual with Verbal Explanations for Relational Concepts -- Combining LIME with Aleph

4 October 2019
Johannes Rabold
Hannah Deininger
M. Siebers
Ute Schmid
    FAtt
ArXivPDFHTML
Abstract

With the increasing number of deep learning applications, there is a growing demand for explanations. Visual explanations provide information about which parts of an image are relevant for a classifier's decision. However, highlighting of image parts (e.g., an eye) cannot capture the relevance of a specific feature value for a class (e.g., that the eye is wide open). Furthermore, highlighting cannot convey whether the classification depends on the mere presence of parts or on a specific spatial relation between them. Consequently, we present an approach that is capable of explaining a classifier's decision in terms of logic rules obtained by the Inductive Logic Programming system Aleph. The examples and the background knowledge needed for Aleph are based on the explanation generation method LIME. We demonstrate our approach with images of a blocksworld domain. First, we show that our approach is capable of identifying a single relation as important explanatory construct. Afterwards, we present the more complex relational concept of towers. Finally, we show how the generated relational rules can be explicitly related with the input image, resulting in richer explanations.

View on arXiv
Comments on this paper