ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.01735
18
1

GmCN: Graph Mask Convolutional Network

4 September 2019
A. Jung
Beibei Wang
Jin Tang
Bin Luo
ArXivPDFHTML
Abstract

Graph Convolutional Networks (GCNs) have shown very powerful for graph data representation and learning tasks. Existing GCNs usually conduct feature aggregation on a fixed neighborhood graph in which each node computes its representation by aggregating the feature representations of all its neighbors which is biased by its own representation. However, this fixed aggregation strategy is not guaranteed to be optimal for GCN based graph learning and also can be affected by some graph structure noises, such as incorrect or undesired edge connections. To address these issues, we propose a novel Graph mask Convolutional Network (GmCN) in which nodes can adaptively select the optimal neighbors in their feature aggregation to better serve GCN learning. GmCN can be theoretically interpreted by a regularization framework, based on which we derive a simple update algorithm to determine the optimal mask adaptively in GmCN training process. Experiments on several datasets validate the effectiveness of GmCN.

View on arXiv
Comments on this paper