ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.12898
95
5

Identifying Sparse Low-Dimensional Structures in Markov Chains: A Nonnegative Matrix Factorization Approach

27 September 2019
Mahsa Ghasemi
Abolfazl Hashemi
H. Vikalo
Ufuk Topcu
ArXivPDFHTML
Abstract

We consider the problem of learning low-dimensional representations for large-scale Markov chains. We formulate the task of representation learning as that of mapping the state space of the model to a low-dimensional state space, called the kernel space. The kernel space contains a set of meta states which are desired to be representative of only a small subset of original states. To promote this structural property, we constrain the number of nonzero entries of the mappings between the state space and the kernel space. By imposing the desired characteristics of the representation, we cast the problem as a constrained nonnegative matrix factorization. To compute the solution, we propose an efficient block coordinate gradient descent and theoretically analyze its convergence properties.

View on arXiv
Comments on this paper