ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.12339
16
2

Coin_flipper at eHealth-KD Challenge 2019: Voting LSTMs for Key Phrases and Semantic Relation Identification Applied to Spanish eHealth Texts

26 September 2019
Neus Català
Mario Martín
ArXivPDFHTML
Abstract

This paper describes our approach presented for the eHealth-KD 2019 challenge. Our participation was aimed at testing how far we could go using generic tools for Text-Processing but, at the same time, using common optimization techniques in the field of Data Mining. The architecture proposed for both tasks of the challenge is a standard stacked 2-layer bi-LSTM. The main particularities of our approach are: (a) The use of a surrogate function of F1 as loss function to close the gap between the minimization function and the evaluation metric, and (b) The generation of an ensemble of models for generating predictions by majority vote. Our system ranked second with an F1 score of 62.18% in the main task by a narrow margin with the winner that scored 63.94%.

View on arXiv
Comments on this paper