ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.11936
14
48

A Refined Equilibrium Generative Adversarial Network for Retinal Vessel Segmentation

26 September 2019
Yukun Zhou
Zailiang Chen
Hai-lan Shen
Xianxian Zheng
Rongchang Zhao
Xuanchu Duan
    GAN
    MedIm
ArXivPDFHTML
Abstract

Objective: Recognizing retinal vessel abnormity is vital to early diagnosis of ophthalmological diseases and cardiovascular events. However, segmentation results are highly influenced by elusive vessels, especially in low-contrast background and lesion region. In this work, we present an end-to-end synthetic neural network, containing a symmetric equilibrium generative adversarial network (SEGAN), multi-scale features refine blocks (MSFRB), and attention mechanism (AM) to enhance the performance on vessel segmentation. Method: The proposed network is granted powerful multi-scale representation capability to extract detail information. First, SEGAN constructs a symmetric adversarial architecture, which forces generator to produce more realistic images with local details. Second, MSFRB are devised to prevent high-resolution features from being obscured, thereby merging multi-scale features better. Finally, the AM is employed to encourage the network to concentrate on discriminative features. Results: On public dataset DRIVE, STARE, CHASEDB1, and HRF, we evaluate our network quantitatively and compare it with state-of-the-art works. The ablation experiment shows that SEGAN, MSFRB, and AM both contribute to the desirable performance. Conclusion: The proposed network outperforms the mature methods and effectively functions in elusive vessels segmentation, achieving highest scores in Sensitivity, G-Mean, Precision, and F1-Score while maintaining the top level in other metrics. Significance: The appreciable performance and computational efficiency offer great potential in clinical retinal vessel segmentation application. Meanwhile, the network could be utilized to extract detail information in other biomedical issues

View on arXiv
Comments on this paper