ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.11588
11
5

Graph Neural Reasoning May Fail in Certifying Boolean Unsatisfiability

25 September 2019
Ziliang Chen
Zhanfu Yang
    NAI
    AI4CE
ArXivPDFHTML
Abstract

It is feasible and practically-valuable to bridge the characteristics between graph neural networks (GNNs) and logical reasoning. Despite considerable efforts and successes witnessed to solve Boolean satisfiability (SAT), it remains a mystery of GNN-based solvers for more complex predicate logic formulae. In this work, we conjectures with some evidences, that generally-defined GNNs present several limitations to certify the unsatisfiability (UNSAT) in Boolean formulae. It implies that GNNs may probably fail in learning the logical reasoning tasks if they contain proving UNSAT as the sub-problem included by most predicate logic formulae.

View on arXiv
Comments on this paper