ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.10166
22
41

Automatic Short Answer Grading via Multiway Attention Networks

23 September 2019
Tianqiao Liu
Wenbiao Ding
Z. Wang
Jiliang Tang
Gale Yan Huang
Zitao Liu
ArXiv (abs)PDFHTML
Abstract

Automatic short answer grading (ASAG), which autonomously score student answers according to reference answers, provides a cost-effective and consistent approach to teaching professionals and can reduce their monotonous and tedious grading workloads. However, ASAG is a very challenging task due to two reasons: (1) student answers are made up of free text which requires a deep semantic understanding; and (2) the questions are usually open-ended and across many domains in K-12 scenarios. In this paper, we propose a generalized end-to-end ASAG learning framework which aims to (1) autonomously extract linguistic information from both student and reference answers; and (2) accurately model the semantic relations between free-text student and reference answers in open-ended domain. The proposed ASAG model is evaluated on a large real-world K-12 dataset and can outperform the state-of-the-art baselines in terms of various evaluation metrics.

View on arXiv
Comments on this paper