ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.09986
19
18

Improving Quality and Efficiency in Plan-based Neural Data-to-Text Generation

22 September 2019
Amit Moryossef
Ido Dagan
Yoav Goldberg
ArXivPDFHTML
Abstract

We follow the step-by-step approach to neural data-to-text generation we proposed in Moryossef et al (2019), in which the generation process is divided into a text-planning stage followed by a plan-realization stage. We suggest four extensions to that framework: (1) we introduce a trainable neural planning component that can generate effective plans several orders of magnitude faster than the original planner; (2) we incorporate typing hints that improve the model's ability to deal with unseen relations and entities; (3) we introduce a verification-by-reranking stage that substantially improves the faithfulness of the resulting texts; (4) we incorporate a simple but effective referring expression generation module. These extensions result in a generation process that is faster, more fluent, and more accurate.

View on arXiv
Comments on this paper