ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.09931
14
6

Volume Preserving Image Segmentation with Entropic Regularization Optimal Transport and Its Applications in Deep Learning

22 September 2019
Haifeng Li
Jun Liu
Li-min Cui
Haiyang Huang
X. Tai
ArXivPDFHTML
Abstract

Image segmentation with a volume constraint is an important prior for many real applications. In this work, we present a novel volume preserving image segmentation algorithm, which is based on the framework of entropic regularized optimal transport theory. The classical Total Variation (TV) regularizer and volume preserving are integrated into a regularized optimal transport model, and the volume and classification constraints can be regarded as two measures preserving constraints in the optimal transport problem. By studying the dual problem, we develop a simple and efficient dual algorithm for our model. Moreover, to be different from many variational based image segmentation algorithms, the proposed algorithm can be directly unrolled to a new Volume Preserving and TV regularized softmax (VPTV-softmax) layer for semantic segmentation in the popular Deep Convolution Neural Network (DCNN). The experiment results show that our proposed model is very competitive and can improve the performance of many semantic segmentation nets such as the popular U-net.

View on arXiv
Comments on this paper