ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.09788
19
1

Visuallly Grounded Generation of Entailments from Premises

21 September 2019
Somayeh Jafaritazehjani
Albert Gatt
Marc Tanti
    LRM
ArXivPDFHTML
Abstract

Natural Language Inference (NLI) is the task of determining the semantic relationship between a premise and a hypothesis. In this paper, we focus on the {\em generation} of hypotheses from premises in a multimodal setting, to generate a sentence (hypothesis) given an image and/or its description (premise) as the input. The main goals of this paper are (a) to investigate whether it is reasonable to frame NLI as a generation task; and (b) to consider the degree to which grounding textual premises in visual information is beneficial to generation. We compare different neural architectures, showing through automatic and human evaluation that entailments can indeed be generated successfully. We also show that multimodal models outperform unimodal models in this task, albeit marginally.

View on arXiv
Comments on this paper