RRT* is one of the most widely used sampling-based algorithms for asymptotically-optimal motion planning. This algorithm laid the foundations for optimality in motion planning as a whole, and inspired the development of numerous new algorithms in the field, many of which build upon RRT* itself. In this paper, we first identify a logical gap in the optimality proof of RRT*, which was developed in Karaman and Frazzoli (2011). Then, we present an alternative and mathematically-rigorous proof for asymptotic optimality. Our proof suggests that the connection radius used by RRT* should be increased from to in order to account for the additional dimension of time that dictates the samples' ordering. Here , , are constants, and , , are the number of samples and the dimension of the problem, respectively.
View on arXiv