ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.09594
13
2

Mining Minimal Map-Segments for Visual Place Classifiers

15 September 2019
Tanaka Kanji
ArXivPDFHTML
Abstract

In visual place recognition (VPR), map segmentation (MS) is a preprocessing technique used to partition a given view-sequence map into place classes (i.e., map segments) so that each class has good place-specific training images for a visual place classifier (VPC). Existing approaches to MS implicitly/explicitly suppose that map segments have a certain size, or individual map segments are balanced in size. However, recent VPR systems showed that very small important map segments (minimal map segments) often suffice for VPC, and the remaining large unimportant portion of the map should be discarded to minimize map maintenance cost. Here, a new MS algorithm that can mine minimal map segments from a large view-sequence map is presented. To solve the inherently NP hard problem, MS is formulated as a video-segmentation problem and the efficient point-trajectory based paradigm of video segmentation is used. The proposed map representation was implemented with three types of VPC: deep convolutional neural network, bag-of-words, and object class detector, and each was integrated into a Monte Carlo localization algorithm (MCL) within a topometric VPR framework. Experiments using the publicly available NCLT dataset thoroughly investigate the efficacy of MS in terms of VPR performance.

View on arXiv
Comments on this paper