ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.09295
25
15

Learning Your Way Without Map or Compass: Panoramic Target Driven Visual Navigation

20 September 2019
David Watkins-Valls
Jingxi Xu
Nicholas R. Waytowich
Peter K. Allen
    SSL
ArXivPDFHTML
Abstract

We present a robot navigation system that uses an imitation learning framework to successfully navigate in complex environments. Our framework takes a pre-built 3D scan of a real environment and trains an agent from pre-generated expert trajectories to navigate to any position given a panoramic view of the goal and the current visual input without relying on map, compass, odometry, or relative position of the target at runtime. Our end-to-end trained agent uses RGB and depth (RGBD) information and can handle large environments (up to 1031m21031m^21031m2) across multiple rooms (up to 404040) and generalizes to unseen targets. We show that when compared to several baselines our method (1) requires fewer training examples and less training time, (2) reaches the goal location with higher accuracy, and (3) produces better solutions with shorter paths for long-range navigation tasks.

View on arXiv
Comments on this paper