ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.09292
27
19

BERT Meets Chinese Word Segmentation

20 September 2019
Haiqin Yang
    SSeg
ArXiv (abs)PDFHTML
Abstract

Chinese word segmentation (CWS) is a fundamental task for Chinese language understanding. Recently, neural network-based models have attained superior performance in solving the in-domain CWS task. Last year, Bidirectional Encoder Representation from Transformers (BERT), a new language representation model, has been proposed as a backbone model for many natural language tasks and redefined the corresponding performance. The excellent performance of BERT motivates us to apply it to solve the CWS task. By conducting intensive experiments in the benchmark datasets from the second International Chinese Word Segmentation Bake-off, we obtain several keen observations. BERT can slightly improve the performance even when the datasets contain the issue of labeling inconsistency. When applying sufficiently learned features, Softmax, a simpler classifier, can attain the same performance as that of a more complicated classifier, e.g., Conditional Random Field (CRF). The performance of BERT usually increases as the model size increases. The features extracted by BERT can be also applied as good candidates for other neural network models.

View on arXiv
Comments on this paper