11
15

Argumentative Relation Classification as Plausibility Ranking

Abstract

We formulate argumentative relation classification (support vs. attack) as a text-plausibility ranking task. To this aim, we propose a simple reconstruction trick which enables us to build minimal pairs of plausible and implausible texts by simulating natural contexts in which two argumentative units are likely or unlikely to appear. We show that this method is competitive with previous work albeit it is considerably simpler. In a recently introduced content-based version of the task, where contextual discourse clues are hidden, the approach offers a performance increase of more than 10% macro F1. With respect to the scarce attack-class, the method achieves a large increase in precision while the incurred loss in recall is small or even nonexistent.

View on arXiv
Comments on this paper