42
14

Improving Natural Language Inference with a Pretrained Parser

Abstract

We introduce a novel approach to incorporate syntax into natural language inference (NLI) models. Our method uses contextual token-level vector representations from a pretrained dependency parser. Like other contextual embedders, our method is broadly applicable to any neural model. We experiment with four strong NLI models (decomposable attention model, ESIM, BERT, and MT-DNN), and show consistent benefit to accuracy across three NLI benchmarks.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.