56
26
v1v2 (latest)

Adaptive Graphical Model Network for 2D Handpose Estimation

Abstract

In this paper, we propose a new architecture called Adaptive Graphical Model Network (AGMN) to tackle the task of 2D hand pose estimation from a monocular RGB image. The AGMN consists of two branches of deep convolutional neural networks for calculating unary and pairwise potential functions, followed by a graphical model inference module for integrating unary and pairwise potentials. Unlike existing architectures proposed to combine DCNNs with graphical models, our AGMN is novel in that the parameters of its graphical model are conditioned on and fully adaptive to individual input images. Experiments show that our approach outperforms the state-of-the-art method used in 2D hand keypoints estimation by a notable margin on two public datasets. Code can be found at https://github.com/deyingk/agmn.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.