21
4

Learning to Generate Questions with Adaptive Copying Neural Networks

Abstract

Automatic question generation is an important problem in natural language processing. In this paper we propose a novel adaptive copying recurrent neural network model to tackle the problem of question generation from sentences and paragraphs. The proposed model adds a copying mechanism component onto a bidirectional LSTM architecture to generate more suitable questions adaptively from the input data. Our experimental results show the proposed model can outperform the state-of-the-art question generation methods in terms of BLEU and ROUGE evaluation scores.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.