ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.07820
24
26
v1v2 (latest)

Job Scheduling on Data Centers with Deep Reinforcement Learning

16 September 2019
Sisheng Liang
Zhou Yang
Fang Jin
Yong Chen
ArXiv (abs)PDFHTML
Abstract

Efficient job scheduling on data centers under heterogeneous complexity is crucial but challenging since it involves the allocation of multi-dimensional resources over time and space. To adapt the complex computing environment in data centers, we proposed an innovative Advantage Actor-Critic (A2C) deep reinforcement learning based approach called DeepScheduler for job scheduling. DeepScheduler consists of two agents, one of which, dubbed the actor, is responsible for learning the scheduling policy automatically and the other one, the critic, reduces the estimation error. Unlike previous policy gradient approaches, DeepScheduler is designed to reduce the gradient estimation variance and to update parameters efficiently. We show that the DeepScheduler can achieve competitive scheduling performance using both simulated workloads and real data collected from an academic data center.

View on arXiv
Comments on this paper