ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.07815
8
30

Particle reconstruction of volumetric particle image velocimetry with strategy of machine learning

16 September 2019
Q. Gao
Shaowu Pan
Hongping Wang
R. Wei
Jinjun Wang
    3DV
ArXivPDFHTML
Abstract

Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is often difficult to be obtained. In general, approximate solutions can be obtained by iterative optimization methods. In the current work, a practical particle reconstruction method based on a convolutional neural network (CNN) with geometry-informed features is proposed. The proposed technique can refine the particle reconstruction from a very coarse initial guess of particle distribution generated by any traditional algebraic reconstruction technique (ART) based methods. Compared with available ART-based algorithms, the novel technique makes significant improvements in terms of reconstruction quality, {robustness to noises}, and at least an order of magnitude faster in the offline stage.

View on arXiv
Comments on this paper