19
3

Bridging Visual Perception with Contextual Semantics for Understanding Robot Manipulation Tasks

Abstract

Understanding manipulation scenarios allows intelligent robots to plan for appropriate actions to complete a manipulation task successfully. It is essential for intelligent robots to semantically interpret manipulation knowledge by describing entities, relations and attributes in a structural manner. In this paper, we propose an implementing framework to generate high-level conceptual dynamic knowledge graphs from video clips. A combination of a Vision-Language model and an ontology system, in correspondence with visual perception and contextual semantics, is used to represent robot manipulation knowledge with Entity-Relation-Entity (E-R-E) and Entity-Attribute-Value (E-A-V) tuples. The proposed method is flexible and well-versed. Using the framework, we present a case study where robot performs manipulation actions in a kitchen environment, bridging visual perception with contextual semantics using the generated dynamic knowledge graphs.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.