ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.07283
14
11

Towards Quality Assurance of Software Product Lines with Adversarial Configurations

16 September 2019
Paul Temple
M. Acher
Gilles Perrouin
Battista Biggio
J. Jézéquel
Fabio Roli
    AAML
ArXivPDFHTML
Abstract

Software product line (SPL) engineers put a lot of effort to ensure that, through the setting of a large number of possible configuration options, products are acceptable and well-tailored to customers' needs. Unfortunately, options and their mutual interactions create a huge configuration space which is intractable to exhaustively explore. Instead of testing all products, machine learning techniques are increasingly employed to approximate the set of acceptable products out of a small training sample of configurations. Machine learning (ML) techniques can refine a software product line through learned constraints and a priori prevent non-acceptable products to be derived. In this paper, we use adversarial ML techniques to generate adversarial configurations fooling ML classifiers and pinpoint incorrect classifications of products (videos) derived from an industrial video generator. Our attacks yield (up to) a 100% misclassification rate and a drop in accuracy of 5%. We discuss the implications these results have on SPL quality assurance.

View on arXiv
Comments on this paper