ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.06844
14
2

Wield: Systematic Reinforcement Learning With Progressive Randomization

15 September 2019
Michael Schaarschmidt
Kai Fricke
Eiko Yoneki
ArXivPDFHTML
Abstract

Reinforcement learning frameworks have introduced abstractions to implement and execute algorithms at scale. They assume standardized simulator interfaces but are not concerned with identifying suitable task representations. We present Wield, a first-of-its kind system to facilitate task design for practical reinforcement learning. Through software primitives, Wield enables practitioners to decouple system-interface and deployment-specific configuration from state and action design. To guide experimentation, Wield further introduces a novel task design protocol and classification scheme centred around staged randomization to incrementally evaluate model capabilities.

View on arXiv
Comments on this paper