ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.06743
11
12

Learning Rhyming Constraints using Structured Adversaries

15 September 2019
Harsh Jhamtani
Sanket Vaibhav Mehta
J. Carbonell
Taylor Berg-Kirkpatrick
    GAN
ArXivPDFHTML
Abstract

Existing recurrent neural language models often fail to capture higher-level structure present in text: for example, rhyming patterns present in poetry. Much prior work on poetry generation uses manually defined constraints which are satisfied during decoding using either specialized decoding procedures or rejection sampling. The rhyming constraints themselves are typically not learned by the generator. We propose an alternate approach that uses a structured discriminator to learn a poetry generator that directly captures rhyming constraints in a generative adversarial setup. By causing the discriminator to compare poems based only on a learned similarity matrix of pairs of line ending words, the proposed approach is able to successfully learn rhyming patterns in two different English poetry datasets (Sonnet and Limerick) without explicitly being provided with any phonetic information.

View on arXiv
Comments on this paper