ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.06351
32
84

Probing the Information Encoded in X-vectors

13 September 2019
Desh Raj
David Snyder
Daniel Povey
Sanjeev Khudanpur
ArXivPDFHTML
Abstract

Deep neural network based speaker embeddings, such as x-vectors, have been shown to perform well in text-independent speaker recognition/verification tasks. In this paper, we use simple classifiers to investigate the contents encoded by x-vector embeddings. We probe these embeddings for information related to the speaker, channel, transcription (sentence, words, phones), and meta information about the utterance (duration and augmentation type), and compare these with the information encoded by i-vectors across a varying number of dimensions. We also study the effect of data augmentation during extractor training on the information captured by x-vectors. Experiments on the RedDots data set show that x-vectors capture spoken content and channel-related information, while performing well on speaker verification tasks.

View on arXiv
Comments on this paper