ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.06273
22
11

Scene Graph Parsing by Attention Graph

13 September 2019
Martin Andrews
Yew Ken Chia
Sam Witteveen
    GNN
ArXivPDFHTML
Abstract

Scene graph representations, which form a graph of visual object nodes together with their attributes and relations, have proved useful across a variety of vision and language applications. Recent work in the area has used Natural Language Processing dependency tree methods to automatically build scene graphs. In this work, we present an Áttention Graph' mechanism that can be trained end-to-end, and produces a scene graph structure that can be lifted directly from the top layer of a standard Transformer model. The scene graphs generated by our model achieve an F-score similarity of 52.21% to ground-truth graphs on the evaluation set using the SPICE metric, surpassing the best previous approaches by 2.5%.

View on arXiv
Comments on this paper