ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.06175
36
1

Recurrent Connectivity Aids Recognition of Partly Occluded Objects

12 September 2019
M. Ernst
Jochen Triesch
T. Burwick
ArXiv (abs)PDFHTML
Abstract

Feedforward convolutional neural networks are the prevalent model of core object recognition. For challenging conditions, such as occlusion, neuroscientists believe that the recurrent connectivity in the visual cortex aids object recognition. In this work we investigate if and how artificial neural networks can also benefit from recurrent connectivity. For this we systematically compare architectures comprised of bottom-up (B), lateral (L) and top-down (T) connections. To evaluate performance, we introduce two novel stereoscopic occluded object datasets, which bridge the gap from classifying digits to recognizing 3D objects. The task consists of recognizing one target object occluded by multiple occluder objects. We find that recurrent models perform significantly better than their feedforward counterparts, which were matched in parametric complexity. We show that for challenging stimuli, the recurrent feedback is able to correctly revise the initial feedforward guess of the network. Overall, our results suggest that both artificial and biological neural networks can exploit recurrence for improved object recognition.

View on arXiv
Comments on this paper