ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.06134
35
4
v1v2 (latest)

Deep Adversarial Belief Networks

13 September 2019
Yuming Huang
Ashkan Panahi
Hamid Krim
Yiyi Yu
S. L. Smith
    GANAI4CE
ArXiv (abs)PDFHTML
Abstract

We present a novel adversarial framework for training deep belief networks (DBNs), which includes replacing the generator network in the methodology of generative adversarial networks (GANs) with a DBN and developing a highly parallelizable numerical algorithm for training the resulting architecture in a stochastic manner. Unlike the existing techniques, this framework can be applied to the most general form of DBNs with no requirement for back propagation. As such, it lays a new foundation for developing DBNs on a par with GANs with various regularization units, such as pooling and normalization. Foregoing back-propagation, our framework also exhibits superior scalability as compared to other DBN and GAN learning techniques. We present a number of numerical experiments in computer vision as well as neurosciences to illustrate the main advantages of our approach.

View on arXiv
Comments on this paper