ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.05850
16
87

Efficiently Breaking the Curse of Horizon in Off-Policy Evaluation with Double Reinforcement Learning

12 September 2019
Nathan Kallus
Masatoshi Uehara
    OffRL
ArXivPDFHTML
Abstract

Off-policy evaluation (OPE) in reinforcement learning is notoriously difficult in long- and infinite-horizon settings due to diminishing overlap between behavior and target policies. In this paper, we study the role of Markovian and time-invariant structure in efficient OPE. We first derive the efficiency bounds for OPE when one assumes each of these structures. This precisely characterizes the curse of horizon: in time-variant processes, OPE is only feasible in the near-on-policy setting, where behavior and target policies are sufficiently similar. But, in time-invariant Markov decision processes, our bounds show that truly-off-policy evaluation is feasible, even with only just one dependent trajectory, and provide the limits of how well we could hope to do. We develop a new estimator based on Double Reinforcement Learning (DRL) that leverages this structure for OPE using the efficient influence function we derive. Our DRL estimator simultaneously uses estimated stationary density ratios and qqq-functions and remains efficient when both are estimated at slow, nonparametric rates and remains consistent when either is estimated consistently. We investigate these properties and the performance benefits of leveraging the problem structure for more efficient OPE.

View on arXiv
Comments on this paper