ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.05546
4
53

Learning First-Order Symbolic Representations for Planning from the Structure of the State Space

12 September 2019
Blai Bonet
Hector Geffner
    NAI
ArXivPDFHTML
Abstract

One of the main obstacles for developing flexible AI systems is the split between data-based learners and model-based solvers. Solvers such as classical planners are very flexible and can deal with a variety of problem instances and goals but require first-order symbolic models. Data-based learners, on the other hand, are robust but do not produce such representations. In this work we address this split by showing how the first-order symbolic representations that are used by planners can be learned from non-symbolic inputs that encode the structure of the state space. The representation learning problem is formulated as the problem of inferring planning instances over a common but unknown first-order domain that account for the structure of the observed state space. This means to infer a complete first-order representation (i.e. general action schemas, relational symbols, and objects) that explains the observed state space structures. The inference problem is cast as a two-level combinatorial search where the outer level searches for values of a small set of hyperparameters and the inner level, solved via SAT, searches for a first-order symbolic model. The framework is shown to produce general and correct first-order representations for standard problems like Gripper, Blocksworld, and Hanoi from input graphs that encode the flat state-space structure of a single instance.

View on arXiv
Comments on this paper