58
3

The Global Markov Property for a Mixture of DAGs

Abstract

Real causal processes may contain feedback loops and change over time. In this paper, we model cycles and non-stationary distributions using a mixture of directed acyclic graphs (DAGs). We then study the conditional independence (CI) relations induced by a density that factorizes according to a mixture of DAGs in two steps. First, we generalize d-separation for a single DAG to mixture d-separation for a mixture of DAGs. We then utilize the mixture d-separation criterion to derive a global Markov property that allows us to read off the CI relations induced by a mixture of DAGs using a particular summary graph. This result has potentially far reaching applications in algorithm design for causal discovery.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.