ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.03751
22
180

Adaptive Unimodal Cost Volume Filtering for Deep Stereo Matching

9 September 2019
Youming Zhang
Yimin Chen
Xiao Bai
J. Zhou
Kun Yu
Zhiwei Li
Kuiyuan Yang
    3DV
ArXivPDFHTML
Abstract

State-of-the-art deep learning based stereo matching approaches treat disparity estimation as a regression problem, where loss function is directly defined on true disparities and their estimated ones. However, disparity is just a byproduct of a matching process modeled by cost volume, while indirectly learning cost volume driven by disparity regression is prone to overfitting since the cost volume is under constrained. In this paper, we propose to directly add constraints to the cost volume by filtering cost volume with unimodal distribution peaked at true disparities. In addition, variances of the unimodal distributions for each pixel are estimated to explicitly model matching uncertainty under different contexts. The proposed architecture achieves state-of-the-art performance on Scene Flow and two KITTI stereo benchmarks. In particular, our method ranked the 1st1^{st}1st place of KITTI 2012 evaluation and the 4th4^{th}4th place of KITTI 2015 evaluation (recorded on 2019.8.20). The codes of AcfNet are available at: https://github.com/DeepMotionAIResearch/DenseMatchingBenchmark.

View on arXiv
Comments on this paper