ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.02667
8
4

Bandwidth Embeddings for Mixed-bandwidth Speech Recognition

5 September 2019
G. Mantena
Ozlem Kalinli
Ossama Abdel-Hamid
Don McAllaster
ArXivPDFHTML
Abstract

In this paper, we tackle the problem of handling narrowband and wideband speech by building a single acoustic model (AM), also called mixed bandwidth AM. In the proposed approach, an auxiliary input feature is used to provide the bandwidth information to the model, and bandwidth embeddings are jointly learned as part of acoustic model training. Experimental evaluations show that using bandwidth embeddings helps the model to handle the variability of the narrow and wideband speech, and makes it possible to train a mixed-bandwidth AM. Furthermore, we propose to use parallel convolutional layers to handle the mismatch between the narrow and wideband speech better, where separate convolution layers are used for each type of input speech signal. Our best system achieves 13% relative improvement on narrowband speech, while not degrading on wideband speech.

View on arXiv
Comments on this paper