ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.02293
22
56

Efficient Neural Architecture Transformation Searchin Channel-Level for Object Detection

5 September 2019
Junran Peng
Ming Sun
Zhaoxiang Zhang
Tieniu Tan
Junjie Yan
    ViT
ArXivPDFHTML
Abstract

Recently, Neural Architecture Search has achieved great success in large-scale image classification. In contrast, there have been limited works focusing on architecture search for object detection, mainly because the costly ImageNet pre-training is always required for detectors. Training from scratch, as a substitute, demands more epochs to converge and brings no computation saving. To overcome this obstacle, we introduce a practical neural architecture transformation search(NATS)algorithm for object detection in this paper. Instead of searching and constructing an entire network, NATS explores the architecture space on the base of existing network and reusing its weights. We propose a novel neural architecture search strategy in channel-level instead of path-level and devise a search space specially targeting at object detection. With the combination of these two designs, an architecture transformation scheme could be discovered to adapt a network designed for image classification to task of object detection. Since our method is gradient-based and only searches for a transformation scheme, the weights of models pretrained inImageNet could be utilized in both searching and retraining stage, which makes the whole process very efficient. The transformed network requires no extra parameters and FLOPs, and is friendly to hardware optimization, which is practical to use in real-time application. In experiments, we demonstrate the effectiveness of NATSon networks like ResNet and ResNeXt. Our transformed networks, combined with various detection frameworks, achieve significant improvements on the COCO dataset while keeping fast.

View on arXiv
Comments on this paper